OBJECTIVE MATHEMATICS Volume 2

CHAPTER-14: MATRICES

UNIT TEST-1

1. Let S be the set of values of λ, for which the system of equations.
$6 \lambda x-3 y+3 z=4 \lambda^{2}$,
$2 x+6 \lambda y+4 z=1$,
$3 x+2 y+3 \lambda z=\lambda$ has no solution. Then $12 \sum_{\lambda \in S}|\lambda|$ is equal to \qquad —.
2. Let $S=\left\{\left(\begin{array}{cc}-1 & a \\ 0 & b\end{array}\right) ; a, b \in\{1,2,3, \ldots .100\}\right\}$ and let
$T_{n}=\left\{A \in S: A^{n(n+1)}=I\right\}$ Then the number of elements in $\xrightarrow[n=1]{100} T_{n}$ is \qquad -.
3. The number of matrices of order 3×3, whose entries are either 0 or 1 and the sum of all the entries is a prime number, is \qquad —.

Hints and Solutions

1. (24)

For no solution

$$
\begin{aligned}
& \left|\begin{array}{ccc}
6 \lambda & -3 & 3 \\
2 & 6 \lambda & 4 \\
3 & 2 & 3 \lambda
\end{array}\right|=0 \\
& \Rightarrow 9 \lambda^{3}-7 \lambda-2=0 \\
& \Rightarrow(\lambda-1)(3 \lambda+1)(3 \lambda+2)=0 \\
& \Rightarrow 12 \sum_{\lambda \in S}|\lambda|=12 \times\left(1+\frac{1}{3}+\frac{2}{3}\right)=24
\end{aligned}
$$

2. (100)
$S=\left\{\left(\begin{array}{cc}-1 & a \\ 0 & b\end{array}\right): a, b \in\{1,2,3, \ldots, 100\}\right\}$
$\because A=\left(\begin{array}{cc}-1 & a \\ 0 & b\end{array}\right)$ then even powers of
A as $\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$, if $b=1$ and $a \in\{1, \ldots . . ., 100\}$
Here, $n(n+1)$ is always even.
$\therefore T_{1}, T_{2}, T_{3}, \ldots, T_{n}$ are all I for $b=1$ and each value of a.
$\therefore \stackrel{100}{\cap} T_{n=1}=100$
3. (282)

In a 3×3 order matrix there are 9 entries.
These nine entries are zero or one.
The sum of positive prime entries are $2,3,5$ or 7 .
Total possible matrices

$$
\begin{aligned}
& =\frac{9!}{2!\cdot 7!}+=\frac{9!}{3!\cdot 6!}+\frac{9!}{5!\cdot 4!}+=\frac{9!}{7!\cdot 2!} \\
& =36+84+126+36=282
\end{aligned}
$$

